50多年来,混合电路和模块技术一直在发展,现在,模块采用了COTS(商用现成有售)形式,为缩短设计周期、减轻过时淘汰问题以及应对SWaP(尺寸、重量和功率)挑战做出了重大贡献。我们来回顾一下这种技术的发展历史,探索一些对航空航天和国防行业而言非常重要的因素。
1.早期的混合电路
上世纪50年代后期,运用分立式晶体管的计算领域取得了巨大进步,但是电路板变得日益复杂了,有时有数千个互连的晶体管、二极管、电阻器和电容器。因此,需要一种解决方案来提高密度和可靠性。政府机构为尝试各种混合电路理念提供了资助。
在这一领域,军方兴趣浓厚,尤其活跃。1958年,美国军方资助的RCA公司开发“微型模块”概念。这种概念采取的方法是,使用从外部配置、统一大小的立方体,以便这些立方体能够相互固定在一起。在内部,各种分立式组件的小芯片垂直叠置,在其边沿处互连。从体积上看,组件密度提高了多于双倍,可靠性则提高了6倍,军方很高兴,在接下来的几年中又进一步投资。在1962年,一个10组件模块的价钱为52美元,大约是常规分立式PCB解决方案价钱的2.5倍。
尽管价钱很高,但是RCA的微型模块非常成功,不过生命很短,集成电路(IC)的诞生无疑促成了这种模块让位。早期IC的价钱是混合式解决方案的9倍,这些IC常常是军方或政府资助项目的受益者,1962年的一个*项目是,雷神(Raytheon)公司为美国航空航天局(NASA)建造的“阿波罗制导计算机(ApolloGuidanceComputer)”。
随着IC的迅速发展,人们不久就认识到IC相对于混合电路和模块的优势。从这方面来看,混合电路技术依然存在似乎令人惊讶。不过,军方常常有更广泛的考虑,包括相对于创新和复杂运行要求,考虑产品稳定性和长期可用性、可靠性、实用性等。这些因素与混合电路和模块的特定技术优势相结合,无疑是混合电路技术在过去50年得到持续使用的原因之一。
2.集成
在本文涵盖的这段时间,ASIC技术带来了行业革命。*初,数百个门的门阵列为军方提供了一条提高数字化集成度的途径,随着门密度的迅速提高和开发工具的改进,混合电路的日子似乎*了。上世纪80年代后期,军用设备设计师认识到了数字ASIC的成功性,尝试将相同的方法应用到混合信号电路。他们的动机主要由小型化需求主导,因为军方需要越来越复杂的系统,那时这样的系统预算很大。但是,调整为客户使用而完全定制的设计工具很难,模拟设计也很复杂,这种困难和复杂性意味着,对于实际上完全定制的设计而言,混合信号ASIC仍然会非常密集地耗费资源,而且高度依赖半导体制造商的设计团队。尽管模拟ASIC设计工具和技术已经取得了巨大进步,但是真实世界的模拟问题范围宽广,仍然难以用现成有售的半定制电路一一解决。因此,当现成有售的产品发挥不了作用时,混合电路为将各种采用不同工艺技术制造的高性能模拟和信号链路功能集成到单个封装中提供了一条途径。
3.性能
军用和航空航天系统一般是以模块化子系统为基础设计的。例如,现场可更换单元(LRU)简化了服务和运行支持。LRU互连依靠MIL-STD-1553总线接口等标准。用混合电路、模块、ASIC宏或在标准格式的电路板上实现这些功能已经成为*方法,实际上,它们就是专用标准产品(ASSP)和基本构件。
这凸显出两个重要因素。首先,无谓的重新发明是没有什么可取之处,而且让设计师专注于系统的核心知识产权才是更有效的用人方式。其次,按照如今的标准,军事和航空航天业是半导体的小用户,与开发单片IC级ASSP相比,开发模块或电路板级解决方案是更加现实的主张。
传统上,电源模块的性能要求也很好地与混合模块技术保持了一致,这种技术所使用的密封金属罐封装满足高温、高可靠性军事应用的功率密度和热量管理需求。随着大型FPGA和微处理器的电源要求越来越高,对更高效的电源架构和负载点(POL)调节的追求已经导致出现了新的模块解决方案。
长久以来,雷达等应用也一直依靠混合电路和模块实现RF和微波解决方案。只是近年来,才出现了开始满足这类需求的单片IC产品,但是现在,新式高度平行的相控阵雷达再次将注意力集中到模块解决方案上。
4.安全性
产品过时淘汰对军工业而言是个非常严重的问题。30到50年的项目寿命很常见,因此军事和航空航天设备供应商不断寻求降低风险的方式。混合电路和模块一直是一种尝试隔离国防行业与半导体行业快速变化的方法。存储器模块是一个引起兴趣的特定领域,因为DRAM和SRAM技术的寿命尤其短。可以保持标准外形尺寸和引脚布局的概念,同时可以更新模块内的存储器芯片。这件事写起来比实际做起来容易得多,部分是因为,在存取时间、架构和电源电压方面不断取得进展。另一方面,如果空间允许,使用标准格式的嵌入式处理器板卡可提供一种更*的方法。不过标准外形尺寸的概念是很多过时淘汰管理战略的核心,无疑也是影响混合电路和模块解决方案寿命长短的一个主要因素。
混合电路和模块也有优势,因为全定制模块可用来隐藏与硬件设计有关的宝贵的知识产权,使逆向工程更加难以实现。仅查看封装上的器件数量不足以对硬件设计解码。此外,有些半导体芯片也不容易在公开市场上买到。
5.从全定制到如今的COTS
之前关于在军用系统中继续使用混合电路和模块的观点仍然有效。不过,重要的是要认识到,军用设备制造商面临的商用压力比以往任何时候都大,尤其是成本和上市时间。
全定制混合设计价钱昂贵,要用相对较长的时间开发。可替代的单片IC解决方案正在逐年增多。尽管大型国防公司仍然开发新的混合设计,但是随着产量下降,可察觉到出现了制造外包趋势。
COTS模块的情形则完全不同。在技术和商用因素的驱动下,基于模块的解决方案出现了明显的势头。开关电源和信号链路是尤其适合用模块实现的两类应用,因为高效率设计需要专门知识,这在今天的军用设计团队中是稀缺品。
6.μModule®产品
μModule产品是如今的COTS模块的一个例子。凌力尔特(现隶属AnalogDevices公司)2005年推出这种产品,首批产品之一是一个完整的12ADC/DC稳压器,采用15mm2表面贴装封装(图1)。
LTM4601AHV12AμModuleDC/DC稳压器
接下来,我们开发了一个完整的μModule产品系列,包括多种电源、接口和信号链路产品,例如*近推出的LTM9100(图2)和ADAQ7980(图3)。
具遥测功能的高压隔离式开关控制器LTM9100
16位1Msps数据采集子系统ADAQ7980
7.COTS模块封装类型
与表面贴装IC类似,每个μModule稳压器都包括一个完整的系统级封装解决方案,可简化设计并*大限度减少外部组件。从内部看,布局和设计都为提高电气性能和热效率进行了优化。这些μModule产品按照业界*高标准开发,提供出色的可靠性,并接近标准IC。提供具金涂层焊盘的LGA(焊盘网格阵列)封装和具SAC305或SnPb焊料的BGA(球珊阵列)封装,且有各种温度级版本。
采用LGA(左)和BGA(右)封装的两种μModule稳压器
如果需要,军用温度级版本μModule产品在?55ºC和+125ºC时通过*的电气测试,可提供有保证的数据表性能。
8.结论
50年前,混合电路和模块是电子电路小型化和改进电子电路可靠性的*技术。随着半导体行业日益商品化,产品生命周期与国防行业设备生命周期差异越来越大,混合电路和模块在减轻过时淘汰问题方面找到了新的用武之地。尽管ASIC成为数字电子电路集成的*方法,但混合模块可以在解决模拟难题这一小型专业化市场发挥作用。
同时,COTS模块以专用标准产品(ApplicationSpecificStandardProducts)形式出现了,尤其是针对电源、处理器、信号链路和接口的模块。随着军用设备提供商争取新的竞争优势、认识到让稀缺设计资源集中于增强核心能力的重要性,这些专用标准产品也得到了广泛采用。
如今,国防预算压力和更短的设计周期可能使完全定制的混合电路日益成为一种遗留解决方案,但是毫无疑问,COTS模块越来越成为军工和航空航天行业的*技术。